Publications Group Hunger


2024
Cavity-Mediated Collective Emission from Few Emitters in a Diamond Membrane
Pallmann, M.; Köster, K.; Zhang, Y.; Heupel, J.; Eichhorn, T.; Popov, C.; Mølmer, K.; Hunger, D.
2024. Physical Review X, 14 (4), Art.-Nr.: 041055. doi:10.1103/PhysRevX.14.041055
Investigation of Purcell enhancement of quantum dots emitting in the telecom O-band with an open fiber cavity
Maisch, J.; Grammel, J.; Tran, N.; Jetter, M.; Portalupi, S. L.; Hunger, D.; Michler, P.
2024. Physical Review B, 110 (16), Article no: 165301. doi:10.1103/PhysRevB.110.165301
Microwave Control of the Tin-Vacancy Spin Qubit in Diamond with a Superconducting Waveguide
Karapatzakis, I.; Resch, J.; Schrodin, M.; Fuchs, P.; Kieschnick, M.; Heupel, J.; Kussi, L.; Sürgers, C.; Popov, C.; Meijer, J.; Becher, C.; Wernsdorfer, W.; Hunger, D.
2024. Physical Review X, 14 (3), Art.-Nr.: 031036. doi:10.1103/PhysRevX.14.031036VolltextVolltext der Publikation als PDF-Dokument
Cavity-enhanced photon indistinguishability at room temperature and telecom wavelengths
Husel, L.; Trapp, J.; Scherzer, J.; Wu, X.; Wang, P.; Fortner, J.; Nutz, M.; Hümmer, T.; Polovnikov, B.; Förg, M.; Hunger, D.; Wang, Y.; Högele, A.
2024. Nature Communications, 15 (1), Art.-Nr.: 3989. doi:10.1038/s41467-024-48119-1VolltextVolltext der Publikation als PDF-Dokument
2023
Detection of single ions in a nanoparticle coupled to a fiber cavity
Deshmukh, C.; Beattie, E.; Casabone, B.; Grandi, S.; Serrano, D.; Ferrier, A.; Goldner, P.; Hunger, D.; Riedmatten, H. de
2023. Optica, 10 (10), 1339–1344. doi:10.1364/OPTICA.491692VolltextVolltext der Publikation als PDF-Dokument
Observation of Narrow Optical Homogeneous Linewidth and Long Nuclear Spin Lifetimes in a Prototypical [Eu(trensal)] Complex
Kuppusamy, S. K.; Vasilenko, E.; Li, W.; Hessenauer, J.; Ioannou, C.; Fuhr, O.; Hunger, D.; Ruben, M.
2023. The Journal of Physical Chemistry C, 127 (22), 10670–10679. doi:10.1021/acs.jpcc.3c02903VolltextVolltext der Publikation als PDF-Dokument
Scanning Cavity Microscopy of a Single-Crystal Diamond Membrane
Körber, J.; Pallmann, M.; Heupel, J.; Stöhr, R.; Vasilenko, E.; Hümmer, T.; Kohler, L.; Popov, C.; Hunger, D.
2023. Physical Review Applied, 19 (6), 064057. doi:10.1103/PhysRevApplied.19.064057VolltextVolltext der Publikation als PDF-Dokument
Laser written mirror profiles for open-access fiber Fabry-Perot microcavities
Hessenauer, J.; Weber, K.; Benedikter, J.; Gissibl, T.; Höfer, J.; Giessen, H.; Hunger, D.
2023. Optics Express, 31 (11), 17380–17388. doi:10.1364/OE.481685VolltextVolltext der Publikation als PDF-Dokument
A highly stable and fully tunable open microcavity platform at cryogenic temperatures
Pallmann, M.; Eichhorn, T.; Benedikter, J.; Casabone, B.; Hümmer, T.; Hunger, D.
2023. APL Photonics, 8 (4), Artkl.Nr.: 046107. doi:10.1063/5.0139003VolltextVolltext der Publikation als PDF-Dokument
Fabrication of High‐Quality Thin Single‐Crystal Diamond Membranes with Low Surface Roughness
Heupel, J.; Pallmann, M.; Körber, J.; Hunger, D.; Reithmaier, J. P.; Popov, C.
2023. physica status solidi (a), 220 (4), Art.-Nr.: 2200465. doi:10.1002/pssa.202200465VolltextVolltext der Publikation als PDF-Dokument
2022
Ultra-narrow optical linewidths in rare-earth molecular crystals
Serrano, D.; Kuppusamy, S. K.; Heinrich, B.; Fuhr, O.; Hunger, D.; Ruben, M.; Goldner, P.
2022. Nature, 603 (7900), 241–246. doi:10.1038/s41586-021-04316-2
Ultra-Sensitive Extinction Measurements of Optically Active Defects in Monolayer MoS 2
Sigger, F.; Amersdorffer, I.; Hötger, A.; Nutz, M.; Kiemle, J.; Taniguchi, T.; Watanabe, K.; Förg, M.; Noe, J.; Finley, J. J.; Högele, A.; Holleitner, A. W.; Hümmer, T.; Hunger, D.; Kastl, C.
2022. The Journal of Physical Chemistry Letters, 13, 10291–10296. doi:10.1021/acs.jpclett.2c02386
2021
Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles
Casabone, B.; Deshmukh, C.; Liu, S.; Serrano, D.; Ferrier, A.; Hümmer, T.; Goldner, P.; Hunger, D.; Riedmatten, H. de
2021. Nature Communications, 12 (1), Art. Nr.: 3570. doi:10.1038/s41467-021-23632-9VolltextVolltext der Publikation als PDF-Dokument
Open-Cavity in Closed-Cycle Cryostat as a Quantum Optics Platform
Vadia, S.; Scherzer, J.; Thierschmann, H.; Schäfermeier, C.; Dal Savio, C.; Taniguchi, T.; Watanabe, K.; Hunger, D.; Karraï, K.; Högele, A.
2021. PRX quantum, 2 (4), Art.-Nr.: 040318. doi:10.1103/PRXQuantum.2.040318VolltextVolltext der Publikation als PDF-Dokument
Tunable Fiber‐Cavity Enhanced Photon Emission from Defect Centers in hBN
Häußler, S.; Bayer, G.; Waltrich, R.; Mendelson, N.; Li, C.; Hunger, D.; Aharonovich, I.; Kubanek, A.
2021. Advanced optical materials, 9 (17), Art.Nr. 2002218. doi:10.1002/adom.202002218VolltextVolltext der Publikation als PDF-Dokument
Dynamical Backaction in an Ultrahigh-Finesse Fiber-Based Microcavity
Rochau, F.; Sánchez Arribas, I.; Brieussel, A.; Stapfner, S.; Hunger, D.; Weig, E. M.
2021. Physical review applied, 16 (1), Art.-Nr.: 014013. doi:10.1103/PhysRevApplied.16.014013VolltextVolltext der Publikation als PDF-Dokument
2020
Fabrication and Characterization of Single-Crystal Diamond Membranes for Quantum Photonics with Tunable Microcavities
Heupel, J.; Pallmann, M.; Körber, J.; Merz, R.; Kopnarski, M.; Stöhr, R.; Reithmaier, J. P.; Hunger, D.; Popov, C.
2020. Micromachines, 11 (12), Art.-Nr.: 1080. doi:10.3390/mi11121080VolltextVolltext der Publikation als PDF-Dokument
Cryogenic platform for coupling color centers in diamond membranes to a fiber-based microcavity
Salz, M.; Herrmann, Y.; Nadarajah, A.; Stahl, A.; Hettrich, M.; Stacey, A.; Prawer, S.; Hunger, D.; Schmidt-Kaler, F.
2020. Applied physics / B, 126 (8), Art. Nr.: 131. doi:10.1007/s00340-020-07478-5VolltextVolltext der Publikation als PDF-Dokument
2019
Cavity-control of interlayer excitons in van der Waals heterostructures
Förg, M.; Colombier, L.; Patel, R. K.; Lindlau, J.; Mohite, A. D.; Yamaguchi, H.; Glazov, M. M.; Hunger, D.; Högele, A.
2019. Nature Communications, 10 (1), Article: 3697. doi:10.1038/s41467-019-11620-zVolltextVolltext der Publikation als PDF-Dokument
Polariton hyperspectral imaging of two-dimensional semiconductor crystals
Gebhardt, C.; Förg, M.; Yamaguchi, H.; Bilgin, I.; Mohite, A. D.; Gies, C.; Florian, M.; Hartmann, M.; Hänsch, T. W.; Högele, A.; Hunger, D.
2019. Scientific reports, 9 (1), Article: 13756. doi:10.1038/s41598-019-50316-8VolltextVolltext der Publikation als PDF-Dokument
Transverse-mode coupling effects in scanning cavity microscopy
Benedikter, J.; Moosmayer, T.; Mader, M.; Hümmer, T.; Hunger, D.
2019. New journal of physics, 21 (10), Article: 103029. doi:10.1088/1367-2630/ab49b4VolltextVolltext der Publikation als PDF-Dokument
Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity
Häußler, S.; Benedikter, J.; Bray, K.; Regan, B.; Dietrich, A.; Twamley, J.; Aharonovich, I.; Hunger, D.; Kubanek, A.
2019. Physical review / B, 99 (16), Article: 165310. doi:10.1103/PhysRevB.99.165310
2018
Driven-dissipative non-equilibrium Bose–Einstein condensation of less than ten photons
Walker, B. T.; Flatten, L. C.; Hesten, H. J.; Mintert, F.; Hunger, D.; Trichet, A. A. P.; Smith, J. M.; Nyman, R. A.
2018. Nature physics, 14 (12), 1173–1177. doi:10.1038/s41567-018-0270-1
Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:Y2O3
Casabone, B.; Benedikter, J.; Hümmer, T.; Oehl, F.; Lima, K. de O.; Hänsch, T. W.; Ferrier, A.; Goldner, P.; Riedmatten, H. de; Hunger, D.
2018. New journal of physics, 20 (9), 095006. doi:10.1088/1367-2630/aadf68VolltextVolltext der Publikation als PDF-Dokument
Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity
Dolan, P. R.; Adekanye, S.; Trichet, A. A. P.; Johnson, S.; Flatten, L. C.; Chen, Y. C.; Weng, L.; Hunger, D.; Chang, H.-C.; Castelletto, S.; Smith., J. M.
2018. Optics express, 26 (6), 7056–7065. doi:10.1364/OE.26.007056VolltextVolltext der Publikation als PDF-Dokument
2017
Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond
Benedikter, J.; Kaupp, H.; Hümmer, T.; Liang, Y.; Bommer, A.; Becher, C.; Krueger, A.; Smith, J. M.; Hänsch, T. W.; Hunger, D.
2017. Physical review applied, 7 (2), Art. Nr.: 024031. doi:10.1103/PhysRevApplied.7.024031
2016
Open optical microcavities for CQED experiments and devices
Smith, J.; Trichet, A.; Dolan, P.; Coles, D.; Flatten, L.; Johnson, S.; Patel, R.; Schwarz, S.; Li, F.; Krizhanovskii, D.; Tartakovskii, A.; Skolnick, M.; Vallance, C.; Hunger, D.
2016. Bulletin of the American Physical Society, 61 (2), A51.00009 
Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity
Kaupp, H.; Hümmer, T.; Mader, M.; Schlederer, B.; Benedikter, J.; Haeusser, P.; Chang, H.-C.; Fedder, H.; Hänsch, T. W.; Hunger, D.
2016. Physical review applied, 6, 054010. doi:10.1103/PhysRevApplied.6.054010VolltextVolltext der Publikation als PDF-Dokument
Cavity-enhanced Raman microscopy of individual carbon nanotubes
Hümmer, T.; Noe, J.; Hofmann, M. S.; Hänsch, T. W.; Högele, A.; Hunger, D.
2016. Nature Communications, 7, 12155. doi:10.1038/ncomms12155VolltextVolltext der Publikation als PDF-Dokument
Photothermal effects in ultra-precisely stabilized tunable microcavities
Brachmann, J. F. S.; Kaupp, H.; Hänsch, T. W.; Hunger, D.
2016. Optics express, 24 (18), 21205–21215. doi:10.1364/OE.24.021205
2015
A scanning cavity microscope
Mader, M.; Reichel, J.; Hänsch, T. W.; Hunger, D.
2015. Nature Communications, 6, 7249. doi:10.1038/ncomms8249
Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters
Grange, T.; Hornecker, G.; Hunger, D.; Poizat, J.-P.; Gerard, J.-M.; Senellart, P.; Auffeves, A.
2015. Physical review letters, 114 (19), 193601. doi:10.1103/PhysRevLett.114.193601
Transverse-mode coupling and diffraction loss in tunable Fabry-Pé rot microcavities
Benedikter, J.; Hümmer, T.; Mader, M.; Schlederer, B.; Reichel, J.; Hänsch, T. W.; Hunger, D.
2015. New journal of physics, 17, Art. Nr.: 053051. doi:10.1088/1367-2630/17/5/053051VolltextVolltext der Publikation als PDF-Dokument
2014
All-optical sensing of a single-molecule electron spin
Sushkov, A. O.; Chisholm, N.; Lovchinsky, I.; Kubo, M.; Lo, P. K.; Bennett, S. D.; Hunger, D.; Akimov, A.; Walsworth, R. L.; Park, H.; Lukin, M. D.
2014. Nano letters, 14 (11), 6443–6448. doi:10.1021/nl502988n
2013
Towards single electron spin detection at room temperature using nitrogen-vacancy centers
Chisholm, N.; Lovchinsky, I.; Sushkov, A.; Kubo, M.; Lo, P.; Bersin, E.; Hunger, D.; Akimov, A.; Bennett, S.; Yao, N.; Park, H.; Lukin, M.
2013. Bulletin of the American Physical Society, 58 (6), D1.00022 
Cavity-enhanced optical detection of carbon nanotube Brownian motion
Stapfner, S.; Ost, L.; Hunger, D.; Reichel, J.; Favero, I.; Weig, E.
2013. Applied physics letters, 102, 151910. doi:10.1063/1.4802746
Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond
Kaupp, H.; Deutsch, C.; Chang, H.-C.; Reichel, J.; Hänsch, T. W.; Hunger, D.
2013. Physical review / A, 88 (5), 053812. doi:10.1103/PhysRevA.88.053812
Hybrid atom-membrane optomechanics
Korppi, M.; Jöckel, A.; Rakher, M. T.; Camerer, S.; Hunger, D.; Hänsch, T. W.; Treutlein, P.
2013. EPJ Web of Conferences, 57, 03006. doi:10.1051/epjconf/20135703006
2012
Progress Towards Room-Temperature Electron Spin Detection in Biological Systems
Chisholm, N.; Lovchinsky, I.; Sushkov, A.; Hunger, D.; Akimov, A.; Lo, P.; Sutton, A.; Robinson, J.; Yao, N.; Bennett, S.; Park, H.; Lukin, M.
2012. Bulletin of the American Physical Society, 57 (5), K1.00153 
Room temperature solid-state quantum bit with second-long memory
Kucsko, G.; Maurer, P.; Latta, C.; Hunger, D.; Jiang, L.; Pastawski, F.; Yao, N.; Bennet, S.; Twitchen, D.; Cirac, I.; Lukin, M.
2012. Bulletin of the American Physical Society, 57 (1), D29.00007 
Towards Probing Living Cell Function with NV Centers in Nanodiamonds
Sushkov, A.; Lovchinsky, I.; Chisholm, N.; Hunger, D.; Akimov, A.; Lo, P.; Sutton, A.; Robinson, J.; Yao, N.; Bennett, S.; Park, H.; Lukin, M.
2012. Bulletin of the American Physical Society, 57 (1), A30.00010 
Multi-second quantum memory based upon a single nuclear spin in a room temperature solid
Maurer, P.; Kucsko, G.; Latta, C.; Jiang, L.; Yao, N.; Bennett, S.; Pastawski, F.; Hunger, D.; Chisholm, N.; Markham, M.; Twitschen, D.; Cirac, I.; Lukin, M.
2012. Bulletin of the American Physical Society, 57 (5), K1.00081 
Room-Temperature Quantum Bit Memory Exceeding One Second
Maurer, P. C.; Kucsko, G.; Latta, C.; Jiang, L.; Yao, N. Y.; Bennett, S. D.; Pastawski, F.; Hunger, D.; Chisholm, N.; Markham, M.; Twitchen, D. J.; Cirac, J. I.; Lukin, M. D.
2012. Science, 336 (6086), 1283–1286. doi:10.1126/science.1220513
Langlebiger Quantenspeicher in Diamant
Hunger, D.; Pastawski, F.; Meier, C.
2012. Physik in unserer Zeit, 43 (5), 217–218. doi:10.1002/piuz.201290078
Laser micro-fabrication of concave, low-roughness features in silica
Hunger, D.; Deutsch, C.; Barbour, R. J.; Warburton, R. J.; Reichel, J.
2012. AIP Advances, 2, 012119. doi:10.1063/1.3679721
2011
Coupling ultracold atoms to mechanical oscillators
Hunger, D.; Camerer, S.; Korppi, M.; Jöckel, A.; Hänsch, T. W.; Treutlein, P.
2011. Comptes rendus physique, 12 (9-10), 871–887. doi:10.1016/j.crhy.2011.04.015
Spectroscopy of mechanical dissipation in micro-mechanical membranes
Jöckel, A.; Rakher, M. T.; Korppi, M.; Camerer, and S.; Hunger, D.; Mader, M.; Treutlein, P.
2011. Applied physics letters, 99 (14), 143109. doi:10.1063/1.3646914
Realization of an optomechanical interface between ultracold atoms and a membrane
Camerer, S.; Korppi, M.; Jöckel, A.; Hunger, D.; Hänsch, T. W.; Treutlein, P.
2011. Physical review letters, 107 (22), 223001. doi:10.1103/PhysRevLett.107.223001
2010
A Bose-Einstein condensate coupled to a micromechanical oscillator
Hunger, D.
2010. Südwestdeutscher Verlag für Hochschulschriften 
Fiber Fabry-Perot cavity with high finesse
Hunger, D.; Steinmetz, T.; Colombe, Y.; Deutsch, C.; Hänsch, T. W.; Reichel, J.
2010. New journal of physics, 12, 065038. doi:10.1088/1367-2630/12/6/065038
Resonant Coupling of a Bose-Einstein Condensate to a Micromechanical Oscillator
Hunger, D.; Camerer, S.; Hänsch, T. W.; König, D.; Kotthaus, J. P.; Reichel, J.; Treutlein, P.
2010. Physical review letters, 104 (14), Art.Nr. 143002. doi:10.1103/PhysRevLett.104.143002
Optical Lattices with Micromechanical Mirrors
Hammerer, K.; Stannigel, K.; Genes, C.; Wallquist, M.; Zoller, P.; Treutlein, P.; Camerer, S.; Hunger, D.; Hänsch, T. W.
2010. Physical review / A, 82, 021803(R). doi:10.1103/PhysRevA.82.021803
2009
Fluctuating nanomechanical system in a high finesse optical microcavity
Favero, I.; Stapfner, S.; Hunger, D.; Paulitschke, P.; Reichel, J.; Lorenz, H.; Weig, E. M.; Karrai, K.
2009. Optics express, 17 (15), 12813–12820. doi:10.1364/OE.17.012813VolltextVolltext der Publikation als PDF-Dokument
2007
Bose-Einstein Condensate Coupled to a Nanomechanical Resonator on an Atom Chip
Treutlein, P.; Hunger, D.; Camerer, S.; Hänsch, T. W.; Reichel, J.
2007. Physical review letters, 99, 140403. doi:10.1103/PhysRevLett.99.140403
Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip
Colombe, Y.; Steinmetz, T.; Dubois, G.; Linke, F.; Hunger, D.; Reichel, J.
2007. Nature, 450, 272–276. doi:10.1038/nature06331
2006
Stable fiber-based Fabry-Pérot cavity
Steinmetz, T.; Colombe, Y.; Hunger, D.; Hänsch, T. W.; Balocchi, A.; Warburton, R. J.; Reichel, J.
2006. Applied physics letters, 89 (11), 111110. doi:10.1063/1.2347892